ECM Eric C. Mitchell & Associates, Inc.

Planning, Site Design, Surveying, Environmental

ALLENSTOWN MAP 402-LOT 152-3 SUBDIVISION OF LAND AND LOT LINE ADJUSTMENT

Mount Delight & Middle Roads

ALLENSTOWN, NH

Job # 14-61 CULVERT CHECK

February 25, 2016

Map 401 Lot 152-3 Allenstown NH Job # 14-61 Page 2

INTRODUCTION

PREDEVELOPMENT CONDITIONS

POST DEVELOPMENT CONDITIONS

USGS LOCATION MAP

EXTREME PRECIPITATION

WEBB SOIL SURVEY

METHODOLOGY

25 & 50 YEAR POST DEVELOPMENT COMPUTATIONS

SUBCATCHMENT MAPS

INTRODUCTION

This proposal is for subdivision of the existing lot 152-3 of 10+- acres into 2 single family residential lots of 5 acres. The site is located within a residential community between two town roads Mount Delight Road and Middle Road. The two of the proposed lots will have access and frontage on Mount Delight Road. The purpose of this study is to provide adequate driveway culverts for the proposed driveways and adequately size a diversion berm along the westerly property line of Lot 152-3 at the request of the town during the Technical review Meeting on February 24, 2016 The drainage for these structures have been reviewed for the 10, and 25 year storm design storm event.

PREDEVELOPMENT CONDITIONS

Currently the site is an existing 10 acre vacant wooded lot. The site is moderately steep with numerous wetlands throughout the parcel. Drainage from the site flows in a general northerly direction into the existing roadside drainage ditch along Mount Delight Road. The area is undeveloped and primarily wooded

Soils on the site consist primarily of 250D Chatfield-Hollis Montauck Complex HSG B and 141D Hollis Rock outcrop HSG D. Soils were obtained from the most recent NRCS Webb Soil Survey.

POST DEVELOPMENT CONDITIONS

The proposed culverts and swales have been sized for the 25 year storm event and checked for flooding for the 50 year storm event.

CONCLUSION

The proposed driveway for lot 152-4 will require a driveway culvert of 15" this culvert will adequately pass the 25 year storm elevation and it has been checked for flooding for the 50 year storm event.

The roadway ditch along Mount Delight road is a 1 foot deep ditch this ditch adequately passes the 25 year storm event and does not flood for the 50 year storm event.

The proposed driveway for lot 152-3 will require a driveway culvert of 18". This culvert will adequately pass the 25 year storm event and does not flood for the 50 year storm event.

The diversion berm along the westerly property line has been provided at the request of the town to direct roadway water back out into the undisturbed woodlands and prevent drainage and erosion problems at the existing lot 152-2. The diversion berm has been sized for the 25 year storm event and adequately passes the 50 year storm event without flooding.

The proposed culverts have been provided with inlet and outlet rip rap protection and flared end sections as well as permanent stone dams places within the drainage swales and diversion berm to reduce erosion and prevent siltation.

METHODOLOGY

The storm water runoff was calculated using the TR 20 methodology, using Hydro CAD version 9.10 software. This program performs both the hydrologic calculations, for determining the amount of runoff for pre and post construction comparisons. Rainfall data was obtained from the most recent Extreme Precipitation Tables provided by Northeast Regional Climate Center. Calculations were performed for the 10yr storm events.

Map 401 Lot 152-3 Allenstown NH Job # 14-61 Page 5

EXTREME PRECIPITATION TABLE

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	71.290 degrees West
Latitude	43.148 degrees North
Elevation	Unknown/Unavailable
Date/Time	Mon, 01 Feb 2016 11:04:48 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.39	0.49	0.64	0.80	1.01	1yr	0.69	0.98	1.18	1.49	1.90	2.44	2.67	1yr	2.16	2.57	2.98	3.68	4.25	1yr
2yr	0.32	0.49	0.61	0.80	1.01	1.27	2yr	0.87	1.16	1.47	1.85	2.32	2.92	3.26	2yr	2.58	3.13	3.62	4.32	4.93	2yr
5yr	0.37	0.58	0.73	0.98	1.25	1.59	5yr	1.08	1.45	1.85	2.33	2.92	3.67	4.15	5yr	3.25	3.99	4.60	5.42	6.13	5yr
10yr	0.42	0.66	0.83	1.13	1.47	1.89	10yr	1.27	1.71	2.21	2.78	3.49	4.36	4.98	10yr	3.86	4.79	5.50	6.44	7.23	10yr
25yr	0.49	0.78	1.00	1.37	1.83	2.37	25yr	1.58	2.14	2.77	3.51	4.41	5.49	6.35	25yr	4.86	6.10	6.99	8.08	8.99	25yr
50yr	0.56	0.90	1.15	1.60	2.16	2.82	50yr	1.86	2.54	3.31	4.20	5.26	6.54	7.63	50yr	5.79	7.34	8.38	9.60	10.61	50yr
100yr	0.63	1.02	1.31	1.86	2.54	3.36	100yr	2.20	3.01	3.95	5.02	6.29	7.80	9.18	100yr	6.90	8.83	10.04	11.41	12.53	100yr
200yr	0.72	1.18	1.52	2.18	3.01	3.99	200yr	2.59	3.57	4.71	5.99	7.50	9.30	11.05	200yr	8.23	10.62	12.04	13.58	14.81	200yr
500yr	0.86	1.41	1.84	2.68	3.75	5.01	500yr	3.23	4.48	5.94	7.57	9.48	11.74	14.12	500yr	10.39	13.58	15.33	17.10	18.48	500yr

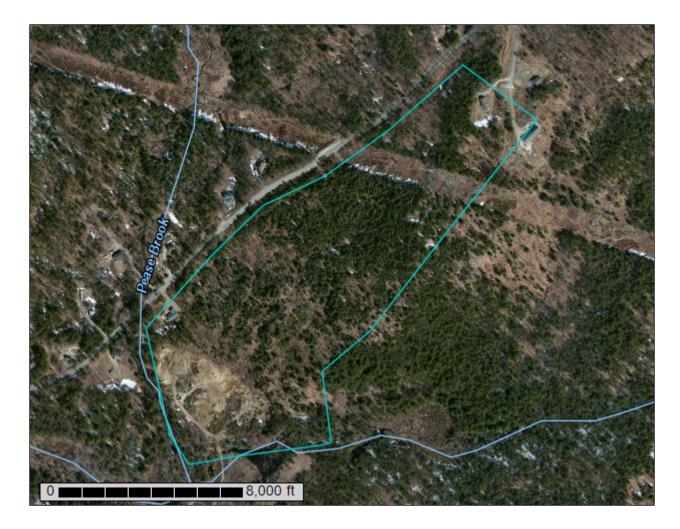
Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.22	0.34	0.41	0.55	0.68	0.88	1yr	0.59	0.86	1.02	1.31	1.55	2.00	2.46	1yr	1.77	2.37	2.74	3.37	3.84	1yr
2yr	0.31	0.48	0.59	0.80	0.98	1.16	2yr	0.85	1.14	1.33	1.76	2.24	2.82	3.13	2yr	2.50	3.01	3.50	4.19	4.78	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.39	5yr	1.01	1.36	1.57	2.05	2.63	3.35	3.75	5yr	2.97	3.60	4.18	5.08	5.62	5yr
10yr	0.39	0.60	0.74	1.04	1.34	1.58	10yr	1.15	1.55	1.78	2.31	2.96	3.81	4.28	10yr	3.37	4.12	4.76	5.84	6.35	10yr
25yr	0.45	0.68	0.85	1.21	1.60	1.88	25yr	1.38	1.84	2.09	2.69	3.46	4.48	5.09	25yr	3.96	4.89	5.66	7.04	7.88	25yr
50yr	0.50	0.76	0.94	1.36	1.83	2.14	50yr	1.58	2.09	2.37	3.02	3.90	5.06	5.77	50yr	4.48	5.55	6.42	8.10	9.02	50yr
100yr	0.56	0.85	1.06	1.53	2.10	2.44	100yr	1.82	2.39	2.69	3.39	4.39	5.71	6.55	100yr	5.05	6.30	7.32	9.32	10.31	100yr
200yr	0.63	0.94	1.20	1.73	2.41	2.77	200yr	2.08	2.71	3.04	3.80	4.94	6.41	8.33	200yr	5.68	8.01	8.33	10.74	11.79	200yr
500yr	0.74	1.09	1.41	2.04	2.91	3.30	500yr	2.51	3.22	3.59	4.43	5.80	7.46	10.08	500yr	6.60	9.69	9.83	12.97	14.07	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.29	0.44	0.54	0.72	0.89	1.07	1yr	0.77	1.05	1.22	1.63	2.05	2.63	2.99	1yr	2.33	2.87	3.31	3.92	4.60	1yr
2yr	0.33	0.51	0.62	0.84	1.04	1.24	2yr	0.90	1.22	1.42	1.87	2.38	3.05	3.41	2yr	2.70	3.28	3.79	4.48	5.12	2yr
5yr	0.40	0.62	0.77	1.06	1.35	1.58	5yr	1.16	1.55	1.81	2.35	3.01	3.99	4.58	5yr	3.53	4.40	5.04	5.77	6.66	5yr
10yr	0.48	0.74	0.91	1.28	1.65	1.92	10yr	1.42	1.88	2.19	2.82	3.60	4.92	5.75	10yr	4.36	5.53	6.29	7.03	8.19	10yr
25yr	0.60	0.92	1.14	1.63	2.15	2.50	25yr	1.85	2.44	2.82	3.59	4.56	6.50	7.79	25yr	5.75	7.50	8.41	9.15	10.17	25yr
50yr	0.71	1.08	1.35	1.94	2.61	3.04	50yr	2.25	2.97	3.40	4.32	5.46	8.04	9.83	50yr	7.11	9.45	10.50	11.17	12.35	50yr
100yr	0.85	1.29	1.61	2.33	3.20	3.70	100yr	2.76	3.62	4.12	5.20	6.56	9.95	12.42	100yr	8.81	11.94	13.13	13.65	14.99	100yr
200yr	1.01	1.52	1.93	2.79	3.90	4.52	200yr	3.36	4.42	5.00	6.26	7.87	12.35	14.25	200yr	10.93	13.70	16.41	16.68	18.22	200yr
500yr	1.28	1.91	2.45	3.56	5.07	5.88	500yr	4.37	5.75	6.45	8.01	10.03	16.43	19.08	500yr	14.54	18.35	22.06	21.78	23.61	500yr

Map 401 Lot 152-3 Allenstown NH Job # 14-61 Page 6


NRCS WEBB SOIL SURVEY

M:\Organized LDD\14-61\DRAINAGE\DRAINAGE 14-61 REP.doc

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Merrimack and Belknap Counties, New Hampshire, and Rockingham County, New Hampshire

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	7
Soil Map	8
Legend	9
Map Unit Legend	10
Map Unit Descriptions	10
Merrimack and Belknap Counties, New Hampshire	13
141D—Hollis-Rock outcrop-Chatfield complex, 15 to 35 percent slopes	.13
250D—Chatfield-Hollis-Montauk complex, 15 to 35 percent slopes, very	
stony	
315A—Mashpee sand 0 to 5 percent slopes	.18
393A—Swansea mucky peat, 0 to 2 percent slopes	.19
Rockingham County, New Hampshire	
26B—Windsor loamy sand, 3 to 8 percent slopes	.21
26E—Windsor loamy sand, 15 to 60 percent slopes	.22
140C—Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very	
	23
140D—Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, very	
stony	
395—Swansea mucky peat, 0 to 2 percent slopes	
447C—Scituate-Newfields complex, 8 to 15 percent slopes, very stony	
Soil Information for All Uses	
Soil Properties and Qualities	
Soil Physical Properties	
Saturated Hydraulic Conductivity (Ksat) (DEERFIELD)	
Soil Qualities and Features	
Hydrologic Soil Group (DEERFIELD)	
References	41

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

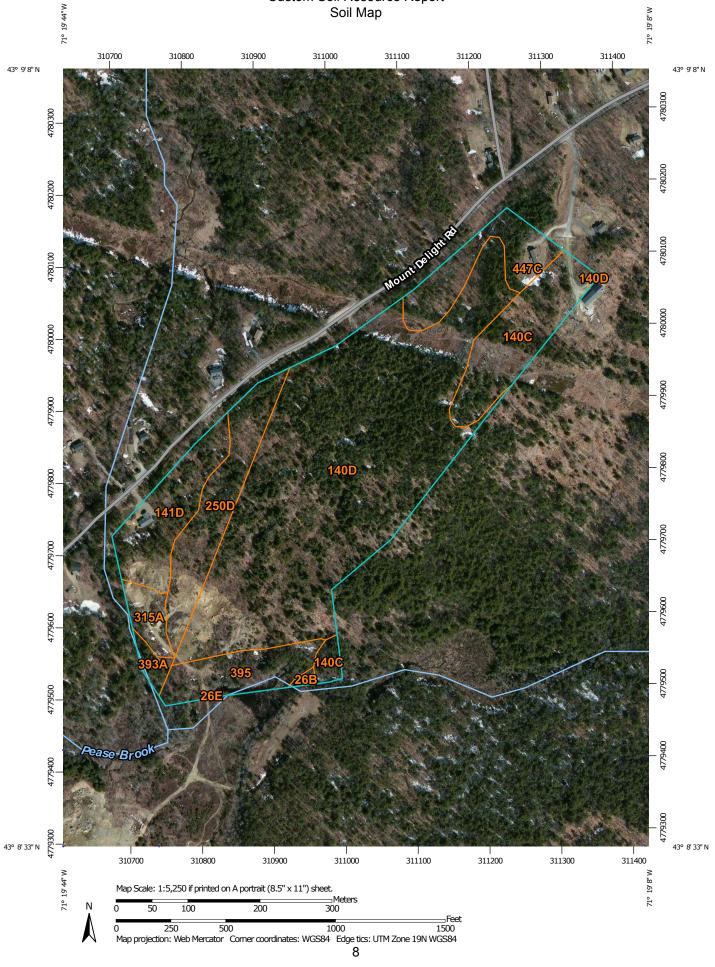
individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soillandscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

	MAP L	EGEND		MAP INFORMATION					
Area of Int	terest (AOI)	m	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:24,000					
	Area of Interest (AOI)	۵	Stony Spot						
Soils		a	Very Stony Spot	Warning: Soil Map may not be valid at this scale.					
	Soil Map Unit Polygons	8	Wet Spot	Enlargement of maps beyond the scale of mapping can cause					
~	Soil Map Unit Lines Soil Map Unit Points		Other	misunderstanding of the detail of mapping and accuracy of soil lin					
			Special Line Features	placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.					
Special	Point Features	Water Fea							
ు	Blowout		Streams and Canals	Please rely on the bar scale on each map sheet for map					
\boxtimes			tation	measurements.					
×	Clay Spot	+++	Rails	Source of Map: Natural Resources Conservation Service					
\diamond	Closed Depression	~	Interstate Highways	Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov					
X	Gravel Pit	~	US Routes	Coordinate System: Web Mercator (EPSG:3857)					
0 0 0	Gravelly Spot	~	Major Roads	Maps from the Web Soil Survey are based on the Web Mercator					
0	Landfill	~	Local Roads	projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the					
A	Lava Flow	Background		Albers equal-area conic projection, should be used if more accura					
عليه	Marsh or swamp	and the second second	Aerial Photography	calculations of distance or area are required.					
~	Mine or Quarry			This product is generated from the USDA-NRCS certified data as					
0	Miscellaneous Water			the version date(s) listed below.					
0	Perennial Water			Soil Survey Area: Merrimack and Belknap Counties, New					
\vee	Rock Outcrop			Hampshire					
+	Saline Spot			Survey Area Data: Version 20, Sep 22, 2015					
000	Sandy Spot			Soil Survey Area: Rockingham County, New Hampshire					
-	Severely Eroded Spot			Survey Area Data: Version 17, Sep 18, 2015					
0	Sinkhole			Your area of interest (AOI) includes more than one soil survey are					
\$	Slide or Slip			These survey areas may have been mapped at different scales, wi					
ø	Sodic Spot			a different land use in mind, at different times, or at different level of detail. This may result in map unit symbols, soil properties, and					
22				interpretations that do not completely agree across soil survey are boundaries.					
				Soil map units are labeled (as space allows) for map scales 1:50,00 or larger.					

Date(s) aerial images were photographed: Apr 8, 2011—May 1, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting

Map Unit Legend

Merrimack and Belknap Counties, New Hampshire (NH609)										
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI							
141D	Hollis-Rock outcrop-Chatfield complex, 15 to 35 percent slopes	3.9	7.9%							
250D	Chatfield-Hollis-Montauk complex, 15 to 35 percent slopes, very stony	4.5	9.0%							
315A	Mashpee sand 0 to 5 percent slopes	1.1	2.2%							
393A	Swansea mucky peat, 0 to 2 percent slopes	0.5	1.0%							
Subtotals for Soil Survey Ar	ea	9.9	20.2%							
Totals for Area of Interest		49.3	100.0%							

Rockingham County, New Hampshire (NH015)										
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI							
26B	Windsor loamy sand, 3 to 8 percent slopes	0.1	0.3%							
26E	Windsor loamy sand, 15 to 60 percent slopes	0.0	0.1%							
140C	Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very stony	5.0	10.2%							
140D	Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, very stony	28.0	56.9%							
395	Swansea mucky peat, 0 to 2 percent slopes	2.9	5.8%							
447C	Scituate-Newfields complex, 8 to 15 percent slopes, very stony	3.2	6.5%							
Subtotals for Soil Survey A	rea	39.3	79.8%							
Totals for Area of Interest		49.3	100.0%							

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Merrimack and Belknap Counties, New Hampshire

141D—Hollis-Rock outcrop-Chatfield complex, 15 to 35 percent slopes

Map Unit Setting

National map unit symbol: 9dh7 Elevation: 200 to 980 feet Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 45 to 52 degrees F Frost-free period: 100 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Hollis and similar soils: 35 percent Rock outcrop: 25 percent Chatfield and similar soils: 20 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hollis

Setting

Landform: Hillslopes Down-slope shape: Linear Across-slope shape: Linear Parent material: Till

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *H1 - 2 to 4 inches:* very fine sandy loam *H2 - 4 to 11 inches:* very fine sandy loam *H3 - 11 to 15 inches:* bedrock

Properties and qualities

Slope: 15 to 35 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D

Description of Rock Outcrop

Setting

Parent material: Granite and gneiss

Properties and qualities

Slope: 15 to 35 percent Depth to restrictive feature: 0 inches to lithic bedrock Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Low to very high (0.01 to 20.00 in/hr)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s

Description of Chatfield

Setting

Landform: Hillslopes Down-slope shape: Linear Across-slope shape: Linear Parent material: Till

Typical profile

Oi - 0 to 1 inches: slightly decomposed plant material

H1 - 1 to 2 inches: fine sandy loam

- H2 2 to 30 inches: gravelly fine sandy loam
- H3 30 to 34 inches: bedrock

Properties and qualities

Slope: 15 to 35 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B

Minor Components

Montauk

Percent of map unit: 5 percent Landform: Hills Down-slope shape: Linear Across-slope shape: Linear

Canton

Percent of map unit: 5 percent Landform: Hillslopes Down-slope shape: Linear Across-slope shape: Linear

Paxton

Percent of map unit: 5 percent Landform: Drumlins Down-slope shape: Linear Across-slope shape: Linear

Scituate

Percent of map unit: 3 percent Landform: Hillslopes Down-slope shape: Linear Across-slope shape: Linear

Newfields

Percent of map unit: 2 percent Landform: Hillslopes

250D—Chatfield-Hollis-Montauk complex, 15 to 35 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w7zt Elevation: 180 to 1,310 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Chatfield, very stony, and similar soils: 35 percent Montauk, very stony, and similar soils: 25 percent Hollis, extremely stony, and similar soils: 20 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chatfield, Very Stony

Setting

Landform: Hills, ridges Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material *A - 1 to 8 inches:* loam *Bw - 8 to 25 inches:* flaggy silt loam

2R - 25 to 35 inches: bedrock

Properties and qualities

Slope: 15 to 35 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B

Description of Montauk, Very Stony

Setting

Landform: Drumlins, ground moraines, hills, recessionial moraines Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear, convex Across-slope shape: Convex Parent material: Coarse-loamy over sandy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material

A - 2 to 6 inches: fine sandy loam

Bw1 - 6 to 28 inches: fine sandy loam

Bw2 - 28 to 36 inches: sandy loam

2Cd - 36 to 74 inches: gravelly loamy sand

Properties and qualities

Slope: 15 to 35 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: 20 to 43 inches to densic material
Natural drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately high (0.00 to 1.42 in/hr)
Depth to water table: About 18 to 37 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: C

Description of Hollis, Extremely Stony

Setting

Landform: Hills, ridges Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Parent material: Loamy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oa - 0 to 1 inches: highly decomposed plant material *A - 1 to 6 inches:* gravelly fine sandy loam *Bw1 - 6 to 9 inches:* gravelly fine sandy loam *Bw2 - 9 to 15 inches:* gravelly fine sandy loam *2R - 15 to 80 inches:* bedrock

Properties and qualities

Slope: 3 to 15 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Natural drainage class: Somewhat excessively drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 5.95 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Very low (about 1.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D

Minor Components

Scituate, very stony

Percent of map unit: 10 percent Landform: Drumlins, ground moraines, hills Landform position (two-dimensional): Footslope, backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear, convex Across-slope shape: Convex

Canton, very stony

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex

Ridgebury, very stony

Percent of map unit: 5 percent Landform: Depressions, drainageways, ground moraines, hills

Custom Soil Resource Report

Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave, linear Across-slope shape: Concave

315A—Mashpee sand 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 21pfq Elevation: 200 to 1,000 feet Mean annual precipitation: 40 to 50 inches Mean annual air temperature: 45 to 52 degrees F Frost-free period: 100 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Mashpee and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Mashpee

Setting

Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy outwash

Typical profile

Oi - 0 to 3 inches: mucky peat *Oe - 3 to 6 inches:* moderately decomposed plant material *H1 - 6 to 8 inches:* sand *H2 - 8 to 11 inches:* sand *H3 - 11 to 65 inches:* sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 6.00 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 5.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: A/D

Minor Components

Scarboro

Percent of map unit: 5 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave

Timakwa

Percent of map unit: 5 percent Landform: Bogs Down-slope shape: Concave Across-slope shape: Concave

Deerfield

Percent of map unit: 5 percent Landform: Terraces Down-slope shape: Linear Across-slope shape: Linear

Scituate

Percent of map unit: 5 percent Landform: Hillslopes Down-slope shape: Linear Across-slope shape: Linear

393A—Swansea mucky peat, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2w68x Elevation: 0 to 950 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Swansea and similar soils: 83 percent Minor components: 17 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Swansea

Setting

Landform: Bogs, depressions, kettles, marshes, swamps *Down-slope shape:* Concave

Across-slope shape: Concave

Parent material: Moderately decomposed organic material over sandy and gravelly glaciofluvial deposits

Typical profile

Oe1 - 0 to 12 inches: mucky peat *Oe2 - 12 to 25 inches:* mucky peat *Cg - 25 to 79 inches:* sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water storage in profile: High (about 11.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: B/D

Minor Components

Freetown

Percent of map unit: 7 percent Landform: Bogs, depressions, kettles, marshes, swamps Down-slope shape: Concave Across-slope shape: Concave

Scarboro

Percent of map unit: 5 percent Landform: Depressions, drainageways, outwash terraces, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave

Walpole

Percent of map unit: 5 percent Landform: Depressions, drainageways, outwash terraces, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave

Rockingham County, New Hampshire

26B—Windsor loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svkf Elevation: 0 to 1,210 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of local importance

Map Unit Composition

Windsor, loamy sand, and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Windsor, Loamy Sand

Setting

Landform: Deltas, dunes, outwash plains, outwash terraces Landform position (three-dimensional): Riser, tread Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Loose sandy glaciofluvial deposits derived from granite and/or loose sandy glaciofluvial deposits derived from schist and/or loose sandy glaciofluvial deposits derived from gneiss

Typical profile

O - 0 to 1 inches: moderately decomposed plant material

A - 1 to 3 inches: loamy sand Bw - 3 to 25 inches: loamy sand

C - 25 to 65 inches: sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A

Minor Components

Hinckley, loamy sand Percent of map unit: 10 percent

Custom Soil Resource Report

Landform: Deltas, eskers, kames, outwash plains Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Head slope, nose slope, side slope, crest, rise

Down-slope shape: Convex *Across-slope shape:* Convex, linear

Deerfield, loamy sand

Percent of map unit: 5 percent Landform: Deltas, outwash plains, terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear

26E—Windsor loamy sand, 15 to 60 percent slopes

Map Unit Setting

National map unit symbol: 2w2ws Elevation: 0 to 760 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Windsor and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Windsor

Setting

Landform: Deltas, dunes, outwash plains, outwash terraces
Landform position (three-dimensional): Riser, tread
Down-slope shape: Linear, convex
Across-slope shape: Linear, convex
Parent material: Loose sandy glaciofluvial deposits derived from granite and/or loose sandy glaciofluvial deposits derived from schist and/or loose sandy glaciofluvial deposits derived from gneiss

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

- A 1 to 3 inches: loamy sand
- Bw 3 to 25 inches: loamy sand
- *C* 25 to 65 inches: sand

Properties and qualities

Slope: 15 to 60 percent *Depth to restrictive feature:* More than 80 inches *Natural drainage class:* Excessively drained Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Available water storage in profile: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A

Minor Components

Hinckley

Percent of map unit: 10 percent Landform: Deltas, eskers, kames, outwash plains Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest, head slope, rise Down-slope shape: Convex Across-slope shape: Convex, linear

Deerfield

Percent of map unit: 5 percent Landform: Deltas, outwash plains, terraces Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear

140C—Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9cmj Elevation: 0 to 2,100 feet Mean annual precipitation: 28 to 46 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 60 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Chatfield and similar soils: 35 percent Canton and similar soils: 20 percent Hollis and similar soils: 20 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chatfield

Setting

Parent material: Till

Typical profile

H1 - 0 to 20 inches: fine sandy loam *H2 - 20 to 31 inches:* cobbly fine sandy loam *R - 31 to 35 inches:* unweathered bedrock

Properties and qualities

Slope: 8 to 15 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B

Description of Hollis

Setting

Parent material: Till

Typical profile

H1 - 0 to 2 inches: fine sandy loam H2 - 2 to 13 inches: cobbly fine sandy loam R - 13 to 17 inches: unweathered bedrock

Properties and qualities

Slope: 8 to 15 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 1.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: D

Description of Canton

Setting

Parent material: Till

Typical profile

H1 - 0 to 5 inches: gravelly fine sandy loam *H2 - 5 to 21 inches:* gravelly fine sandy loam *H3 - 21 to 60 inches:* loamy sand

Properties and qualities

Slope: 8 to 15 percent Percent of area covered with surface fragments: 1.6 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A

Minor Components

Not named

Percent of map unit: 7 percent

Newfields

Percent of map unit: 5 percent

Ossipee and greenwood

Percent of map unit: 5 percent Landform: Bogs

Scarboro

Percent of map unit: 3 percent *Landform:* Depressions

Walpole

Percent of map unit: 3 percent Landform: Depressions

Rock outcrop

Percent of map unit: 2 percent

140D—Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9cmk Elevation: 0 to 2,100 feet Mean annual precipitation: 28 to 56 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 60 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Chatfield and similar soils: 35 percent Canton and similar soils: 20 percent Hollis and similar soils: 20 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chatfield

Setting

Parent material: Till

Typical profile

H1 - 0 to 20 inches: fine sandy loam
H2 - 20 to 31 inches: cobbly fine sandy loam
R - 31 to 35 inches: unweathered bedrock

Properties and qualities

Slope: 15 to 35 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B

Description of Hollis

Setting

Parent material: Till

Typical profile

H1 - 0 to 2 inches: fine sandy loam *H2 - 2 to 13 inches:* cobbly fine sandy loam *R - 13 to 17 inches:* unweathered bedrock

Properties and qualities

Slope: 15 to 35 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: 10 to 20 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Very low (about 1.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D

Description of Canton

Setting

Parent material: Till

Typical profile

H1 - 0 to 5 inches: gravelly fine sandy loam

- H2 5 to 21 inches: gravelly fine sandy loam
- H3 21 to 60 inches: loamy sand

Properties and qualities

Slope: 15 to 35 percent Percent of area covered with surface fragments: 1.6 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Medium Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A

Minor Components

Montauk

Percent of map unit: 7 percent

Not named

Percent of map unit: 5 percent

Ossipee and greenwood

Percent of map unit: 5 percent Landform: Bogs

Scarboro

Percent of map unit: 3 percent Landform: Depressions

Walpole

Percent of map unit: 3 percent Landform: Depressions

Rock outcrop

Percent of map unit: 2 percent

395—Swansea mucky peat, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2w68x Elevation: 0 to 950 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Swansea and similar soils: 83 percent Minor components: 17 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Swansea

Setting

Landform: Bogs, depressions, kettles, marshes, swamps Down-slope shape: Concave Across-slope shape: Concave Parent material: Moderately decomposed organic material over sandy and gravelly glaciofluvial deposits

Typical profile

Oe1 - 0 to 12 inches: mucky peat

Oe2 - 12 to 25 inches: mucky peat *Cg - 25 to 79 inches:* sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water storage in profile: High (about 11.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: B/D

Minor Components

Freetown

Percent of map unit: 7 percent Landform: Bogs, depressions, kettles, marshes, swamps Down-slope shape: Concave Across-slope shape: Concave

Scarboro

Percent of map unit: 5 percent Landform: Depressions, outwash terraces, drainageways, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave

Walpole

Percent of map unit: 5 percent Landform: Depressions, outwash terraces, drainageways, outwash deltas Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave

447C—Scituate-Newfields complex, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9cns Elevation: 0 to 1,000 feet Mean annual precipitation: 35 to 56 inches Mean annual air temperature: 45 to 52 degrees F Frost-free period: 120 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Scituate and similar soils: 50 percent Newfields and similar soils: 25 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Scituate

Typical profile

H1 - 0 to 8 inches: fine sandy loam

H2 - 8 to 32 inches: cobbly fine sandy loam

H3 - 32 to 60 inches: gravelly loamy sand

Properties and qualities

Slope: 8 to 15 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: About 32 inches to densic material
Natural drainage class: Moderately well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C

Description of Newfields

Setting

Parent material: Till

Typical profile

H1 - 0 to 9 inches: fine sandy loam

H2 - 9 to 35 inches: fine sandy loam

H3 - 35 to 64 inches: gravelly loamy sand

Properties and qualities

Slope: 8 to 15 percent
Percent of area covered with surface fragments: 1.6 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Moderately well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 24 to 48 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s

Hydrologic Soil Group: C

Minor Components

Canton

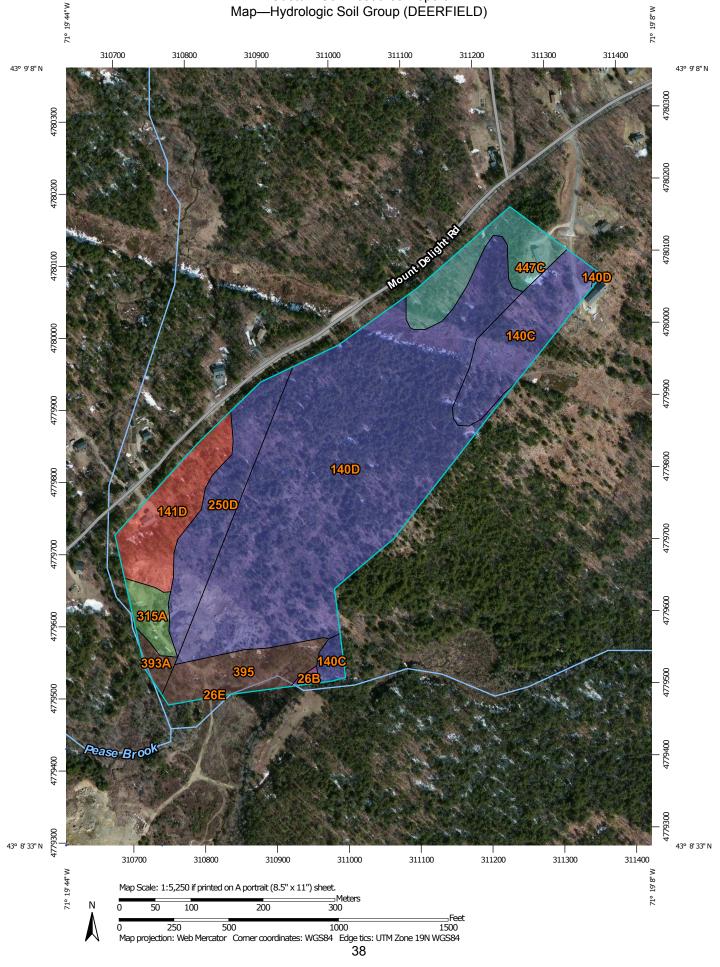
Percent of map unit: 5 percent

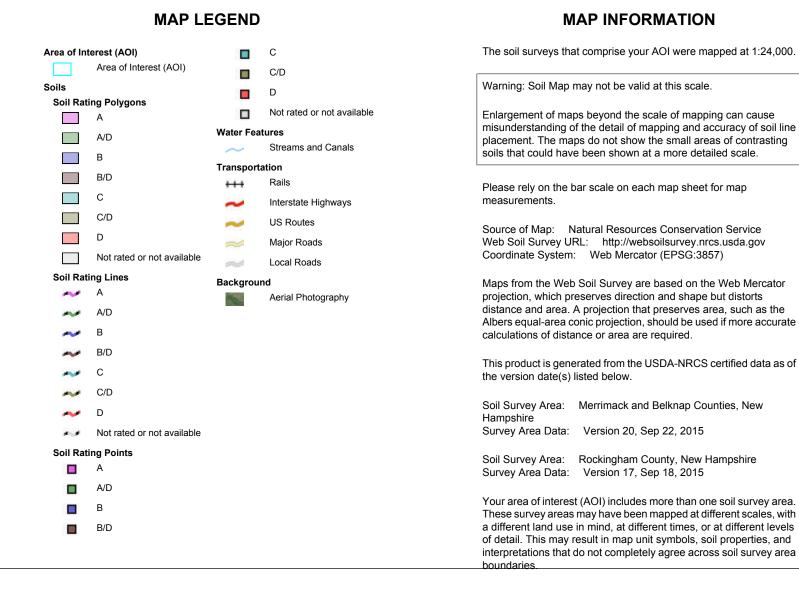
Montauk

Percent of map unit: 5 percent

Not named

Percent of map unit: 5 percent


Ridgebury


Percent of map unit: 5 percent Landform: Depressions

Walpole

Percent of map unit: 5 percent Landform: Depressions

Custom Soil Resource Report Map—Hydrologic Soil Group (DEERFIELD)

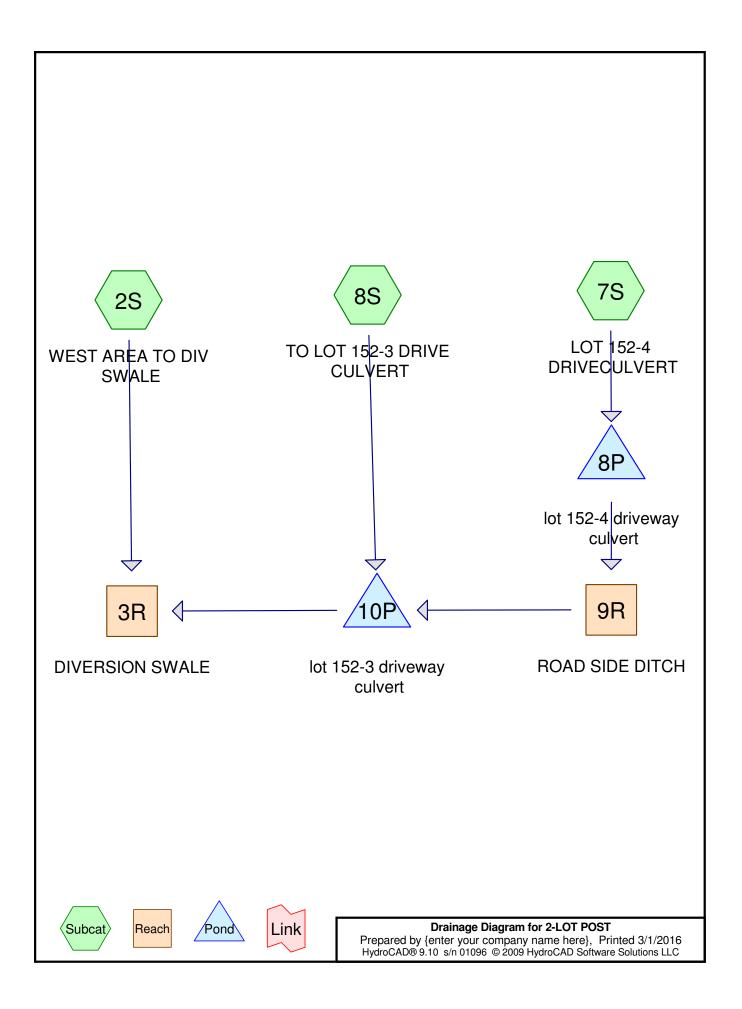
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 8, 2011—May 1, 2011

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting

Table—Hydrologic Soil Group (DEERFIELD)

Hydrologic Soil Group— Summary by Map Unit — Merrimack and Belknap Counties, New Hampshire (NH609)					
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
141D	Hollis-Rock outcrop- Chatfield complex, 15 to 35 percent slopes	D	3.9	7.9%	
250D	Chatfield-Hollis-Montauk complex, 15 to 35 percent slopes, very stony	В	4.5	9.0%	
315A	Mashpee sand 0 to 5 percent slopes	A/D	1.1	2.2%	
393A	Swansea mucky peat, 0 to 2 percent slopes	B/D	0.5	1.0%	
Subtotals for Soil Surv	ey Area	9.9	20.2%		
Totals for Area of Inter	est	49.3	100.0%		


Hydrologic Soil Group— Summary by Map Unit — Rockingham County, New Hampshire (NH015)					
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
26B	Windsor loamy sand, 3 to 8 percent slopes	А	0.1	0.3%	
26E	Windsor loamy sand, 15 to 60 percent slopes	A	0.0	0.1%	
140C	Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very stony	В	5.0	10.2%	
140D	Chatfield-Hollis-Canton complex, 15 to 35 percent slopes, very stony	В	28.0	56.9%	
395	Swansea mucky peat, 0 to 2 percent slopes	B/D	2.9	5.8%	
447C	Scituate-Newfields complex, 8 to 15 percent slopes, very stony	С	3.2	6.5%	
Subtotals for Soil Surv	rey Area	39.3	79.8%		
Totals for Area of Inter	rest		49.3	100.0%	

Rating Options—Hydrologic Soil Group (DEERFIELD)

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher Map 401 Lot 152-3 Allenstown NH Job # 14-61 Page 7

25 & 50 YEAR POST DEVELOPMENT COMPUTATIONS

M:\Organized LDD\14-61\DRAINAGE\DRAINAGE 14-61 REP.doc

2-LOT POST Prepared by {enter your company name here} HydroCAD® 9.10 s/n 01096 © 2009 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
228,538	55	Woods, Good, HSG B (2S, 7S, 8S)
10,000	61	>75% Grass cover, Good, HSG B (8S)
42,398	77	Woods, Good, HSG D (2S, 8S)
10,000	80	>75% Grass cover, Good, HSG D (2S)
6,900	98	Paved parking, HSG B (7S, 8S)
3,000	98	Paved parking, HSG D (2S)
3,000	98	Paved roads w/curbs & sewers, HSG B (8S)
303,836		TOTAL AREA

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
248,438	HSG B	2S, 7S, 8S
0	HSG C	
55,398	HSG D	2S, 8S
0	Other	
303,836		TOTAL AREA

275.31

275.61

2

10P

0.0

0.0

Node Diam/Width Fill Line# In-Invert Out-Invert Length Slope n Height Number (feet) (feet) (feet) (ft/ft) (inches) (inches) (inches) 8P 1 293.50 293.20 30.0 0.0100 0.013 15.0 0.0 0.0

30.0

0.0100

0.013

18.0

Pipe Listing (all nodes)

2-LOT POST	Type III 24-hr 25YR Rainfall=5.49"				
Prepared by {enter your company name here}	Printed 3/1/2016				
HydroCAD® 9.10 s/n 01096 © 2009 HydroCAD Software Solutions LLC	Page 5				
Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method					
	3.40% Impervious Runoff Depth>1.82" min CN=65 Runoff=4.49 cfs 13,393 cf				
	2.58% Impervious Runoff Depth>1.16" min CN=56 Runoff=3.30 cfs 15,408 cf				
	10.20% Impervious Runoff Depth>2.05" 3 min CN=68 Runoff=2.23 cfs 9,699 cf				
Reach 3R: DIVERSION SWALEAvg. Flow Depth=1.22'Maxn=0.140L=360.0'S=0.0259 '/'Capaci	x Vel=1.38 fps Inflow=7.62 cfs 38,446 cf ty=21.78 cfs Outflow=7.41 cfs 38,157 cf				
	x Vel=3.54 fps Inflow=3.30 cfs 15,398 cf city=9.17 cfs Outflow=3.27 cfs 15,366 cf				
	Storage=69 cf Inflow=3.30 cfs 15,408 cf S=0.0100 '/' Outflow=3.30 cfs 15,398 cf				
	Storage=92 cf Inflow=5.45 cfs 25,065 cf S=0.0100 '/' Outflow=5.45 cfs 25,053 cf				
Total Runoff Area = 303,836 sf Runoff Volume = 38, 95.75% Pervious = 290,9	500 cf Average Runoff Depth = 1.52" 936 sf 4.25% Impervious = 12,900 sf				

Summary for Subcatchment 2S: WEST AREA TO DIV SWALE

Runoff = 4.49 cfs @ 12.10 hrs, Volume= 13,393 cf, Depth> 1.82"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR Rainfall=5.49"

A	rea (sf)	CN	Description			
	23,146	77	Woods, Go	od, HSG D		
	52,093	55	Woods, Go	od, HSG B		
	3,000	98	Paved park	ing, HSG D)	
	10,000	80	>75% Grass cover, Good, HSG D			
	88,239	65	Weighted A	verage		
	85,239	96.60% Pervious Area				
	3,000		3.40% Impervious Area			
Tc	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry,	
					-	

Summary for Subcatchment 7S: LOT 152-4 DRIVECULVERT

Runoff = 3.30 cfs @ 12.30 hrs, Volume= 15,408 cf, Depth> 1.16"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR Rainfall=5.49"

A	rea (sf)	CN E	Description		
1	54,642	55 V	Voods, Go	od, HSG B	
	4,100	98 F	aved park	ing, HSG B	
1	58,742	56 V	Veighted A	verage	
1	54,642	9	7.42% Per	vious Area	
	4,100	2	.58% Impe	ervious Area	1
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.6	100	0.0500	0.11		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.92"
2.7	265	0.1100	1.66		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.6	335	0.1100	9.15	73.20	Trap/Vee/Rect Channel Flow,
					Bot.W=0.00' D=2.00' Z= 2.0 '/' Top.W=8.00'
					n= 0.050
18.9	700	Total			

Summary for Subcatchment 8S: TO LOT 152-3 DRIVE CULVERT

Runoff = 2.23 cfs @ 12.30 hrs, Volume= 9,699 cf, Depth> 2.05"

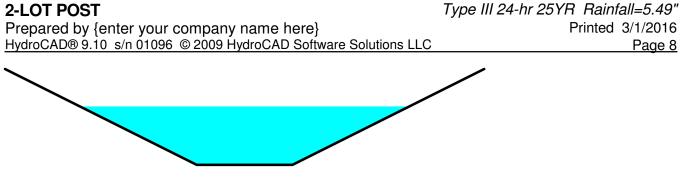
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 25YR Rainfall=5.49"

A	rea (sf)	CN E	Description			
	21,803	55 V	Woods, Good, HSG B			
	2,800	98 F	aved park	ing, HSG B		
	3,000	98 F	Paved road	s w/curbs &	& sewers, HSG B	
	10,000				ood, HSG B	
	19,252	77 V	Voods, Go	od, HSG D		
	56,855		68 Weighted Average			
	51,055	-		vious Area		
	5,800	1	0.20% Imp	pervious Ar	ea	
_				a 1.		
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
15.6	100	0.0500	0.11		Sheet Flow,	
					Woods: Light underbrush n= 0.400 P2= 2.92"	
4.5	448	0.1100	1.66		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	
0.2	100	0.1100	9.15	73.20	Trap/Vee/Rect Channel Flow,	
					Bot.W=0.00' D=2.00' Z= 2.0 '/' Top.W=8.00'	
					n= 0.050	
20.3	648	Total				

Summary for Reach 3R: DIVERSION SWALE

[79] Warning: Submerged Pond 10P Primary device # 1 INLET by 0.92'

 Inflow Area =
 303,836 sf,
 4.25% Impervious,
 Inflow Depth >
 1.52"
 for
 25YR event


 Inflow =
 7.62 cfs @
 12.30 hrs,
 Volume=
 38,446 cf

 Outflow =
 7.41 cfs @
 12.42 hrs,
 Volume=
 38,157 cf,
 Atten= 3%,
 Lag= 7.1 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.38 fps, Min. Travel Time= 4.4 min Avg. Velocity = 0.68 fps, Avg. Travel Time= 8.8 min

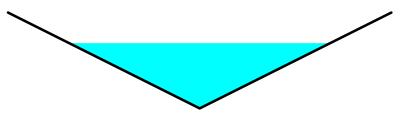
Peak Storage= 1,946 cf @ 12.34 hrs Average Depth at Peak Storage= 1.22' Bank-Full Depth= 2.00', Capacity at Bank-Full= 21.78 cfs

2.00' x 2.00' deep channel, n= 0.140 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 360.0' Slope= 0.0259 '/' Inlet Invert= 275.31', Outlet Invert= 266.00'

Summary for Reach 9R: ROAD SIDE DITCH

[79] Warning: Submerged Pond 8P Primary device # 1 INLET by 0.18'

 Inflow Area =
 158,742 sf,
 2.58% Impervious,
 Inflow Depth >
 1.16"
 for
 25YR event


 Inflow =
 3.30 cfs @
 12.31 hrs,
 Volume=
 15,398 cf

 Outflow =
 3.27 cfs @
 12.35 hrs,
 Volume=
 15,366 cf,
 Atten=
 1%,
 Lag=
 2.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.54 fps, Min. Travel Time= 1.2 min Avg. Velocity = 2.02 fps, Avg. Travel Time= 2.1 min

Peak Storage= 232 cf @ 12.32 hrs Average Depth at Peak Storage= 0.68' Bank-Full Depth= 1.00', Capacity at Bank-Full= 9.17 cfs

0.00' x 1.00' deep channel, n= 0.050 Side Slope Z-value= 2.0 '/' Top Width= 4.00' Length= 250.0' Slope= 0.0696 '/' Inlet Invert= 293.00', Outlet Invert= 275.61'

Summary for Pond 8P: lot 152-4 driveway culvert

[88] Warning: Qout>Qin may require Finer Routing>1

Inflow Area =	158,742 sf, 2.58% Impervious,	Inflow Depth > 1.16" for 25YR event
Inflow =	3.30 cfs @ 12.30 hrs, Volume=	15,408 cf
Outflow =	3.30 cfs @ 12.31 hrs, Volume=	15,398 cf, Atten= 0%, Lag= 0.3 min
Primary =	3.30 cfs @ 12.31 hrs, Volume=	15,398 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 294.53' @ 12.31 hrs Surf.Area= 77 sf Storage= 69 cf

Plug-Flow detention time= 0.6 min calculated for 15,398 cf (100% of inflow) Center-of-Mass det. time= 0.4 min (842.1 - 841.7)

2-LOT POST

Type III 24-hr 25YR Rainfall=5.49" Printed 3/1/2016 Page 9

Prepared by {enter your company name here} HydroCAD® 9.10 s/n 01096 © 2009 HydroCAD Software Solutions LLC

Volume	Inv	ert Avail	.Storage	e Storage Description			
#1	293.	50'	199 cf	Custom Stage D	ata (Irregular) Lis	ted below (Recalc)	
Elevatio (fee 293.9 294.0 296.0	et) 50 00	Surf.Area (sq-ft) 50 70 100	Perim. (feet) 50.0 75.0 80.0	Inc.Store (cubic-feet) 0 30 169	Cum.Store (cubic-feet) 0 30 199	Wet.Area (sq-ft) 50 301 467	
Device	Routing			et Devices		500	
#1	Primary	293.				= 0.0100 '/' Cc= ().900

Primary OutFlow Max=3.29 cfs @ 12.31 hrs HW=294.53' (Free Discharge) **1=Culvert** (Barrel Controls 3.29 cfs @ 4.14 fps)

Summary for Pond 10P: lot 152-3 driveway culvert

[62] Hint: Exceeded Reach 9R OUTLET depth by 0.61' @ 12.35 hrs

Inflow Area	a =	215,597 sf,	4.59% Impervious,	Inflow Depth > 1.40	" for 25YR event
Inflow	=	5.45 cfs @	12.33 hrs, Volume=	25,065 cf	
Outflow	=	5.45 cfs @	12.33 hrs, Volume=	25,053 cf, Att	en= 0%, Lag= 0.3 min
Primary	=	5.45 cfs @	12.33 hrs, Volume=	25,053 cf	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 276.90' @ 12.33 hrs Surf.Area= 83 sf Storage= 92 cf

Plug-Flow detention time= 0.5 min calculated for 24,970 cf (100% of inflow) Center-of-Mass det. time= 0.3 min (834.6 - 834.2)

Volume	Inv	ert Avail.Sto	rage Storag	age Storage Description			
#1	275.6	51' 19	93 cf Custo	3 cf Custom Stage Data (Prismatic) Listed below (Recalc)			
Elevatio (fee 275.6 276.0 278.0	et) 61 00	Surf.Area (sq-ft) 50 70 100	Inc.Store (cubic-feet) 0 23 170	Cum.Store (cubic-feet) 0 23 193			
Device #1	Routing Primary	Invert 275.61'	Outlet Devices 18.0'' Round Culvert L= 30.0' Ke= 0.500 Inlet / Outlet Invert= 275.61' / 275.31' S= 0.0100 '/' Cc= 0.900 n= 0.013				

Primary OutFlow Max=5.42 cfs @ 12.33 hrs HW=276.89' (Free Discharge) **1=Culvert** (Barrel Controls 5.42 cfs @ 4.52 fps)

2-LOT POST Prepared by {enter your company name here} HydroCAD® 9.10 s/n 01096 © 2009 HydroCAD Software Solutions LLC	<i>Type III 24-hr 50YR Rainfall=6.54"</i> Printed 3/1/2016 Page 10
Time span=5.00-20.00 hrs, dt=0.05 hrs, Runoff by SCS TR-20 method, UH Reach routing by Stor-Ind+Trans method - Pond rou	=SCŚ
•	3.40% Impervious Runoff Depth>2.54" min CN=65 Runoff=6.33 cfs 18,655 cf
	2.58% Impervious Runoff Depth>1.74" min CN=56 Runoff=5.20 cfs 22,983 cf
	10.20% Impervious Runoff Depth>2.80" min CN=68 Runoff=3.08 cfs 13,273 cf
Reach 3R: DIVERSION SWALEAvg. Flow Depth=1.46' Maxn=0.140L=360.0' S=0.0259 '/' Capacity	•
e 1	x Vel=3.98 fps Inflow=5.20 cfs 22,972 cf city=9.17 cfs Outflow=5.14 cfs 22,932 cf
	Storage=103 cf Inflow=5.20 cfs 22,983 cf S=0.0100 '/' Outflow=5.20 cfs 22,972 cf
	Storage=134 cf Inflow=8.20 cfs 36,205 cf S=0.0100 '/' Outflow=8.20 cfs 36,192 cf
Total Runoff Area = 303,836 sf Runoff Volume = 54,9 95.75% Pervious = 290,9	912 cf Average Runoff Depth = 2.17" 936 sf 4.25% Impervious = 12,900 sf

Summary for Subcatchment 2S: WEST AREA TO DIV SWALE

Runoff = 6.33 cfs @ 12.10 hrs, Volume= 18,655 cf, Depth> 2.54"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR Rainfall=6.54"

A	rea (sf)	CN	Description			
	23,146	77	Woods, Go	od, HSG D		
	52,093	55	Woods, Go	od, HSG B		
	3,000	98	Paved park	ing, HSG D)	
	10,000	80	>75% Gras	s cover, Go	ood, HSG D	
	88,239	65 Weighted Average				
	85,239	96.60% Pervious Area				
	3,000	3.40% Impervious Area				
Tc	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry,	
					-	

Summary for Subcatchment 7S: LOT 152-4 DRIVECULVERT

Runoff = 5.20 cfs @ 12.29 hrs, Volume= 22,983 cf, Depth> 1.74"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR Rainfall=6.54"

A	rea (sf)	CN E	escription		
1	54,642	55 V	Voods, Go	od, HSG B	
	4,100	98 F	aved park	ing, HSG B	
1	58,742	56 V	Veighted A	verage	
1	54,642	9	7.42% Per	vious Area	
	4,100	2	.58% Impe	ervious Area	3
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
15.6	100	0.0500	0.11		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.92"
2.7	265	0.1100	1.66		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.6	335	0.1100	9.15	73.20	Trap/Vee/Rect Channel Flow,
					Bot.W=0.00' D=2.00' Z= 2.0 '/' Top.W=8.00'
					n= 0.050
18.9	700	Total			

Summary for Subcatchment 8S: TO LOT 152-3 DRIVE CULVERT

Runoff = 3.08 cfs @ 12.29 hrs, Volume= 13,273 cf, Depth> 2.80"

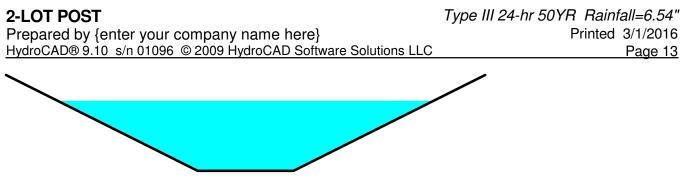
Runoff by SCS TR-20 method, UH=SCS, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type III 24-hr 50YR Rainfall=6.54"

A	rea (sf)	CN E	Description				
	21,803	55 V	Woods, Good, HSG B				
	2,800	98 F	Paved parking, HSG B				
	3,000	98 F	Paved roads w/curbs & sewers, HSG B				
	10,000				ood, HSG B		
	19,252	77 V	Voods, Go	od, HSG D			
	56,855		Veighted A				
	51,055	-		vious Area			
	5,800	1	0.20% Imp	pervious Ar	ea		
_				a 1.			
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
15.6	100	0.0500	0.11		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 2.92"		
4.5	448	0.1100	1.66		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
0.2	100	0.1100	9.15	73.20	Trap/Vee/Rect Channel Flow,		
					Bot.W=0.00' D=2.00' Z= 2.0 '/' Top.W=8.00'		
					n= 0.050		
20.3	648	Total					

Summary for Reach 3R: DIVERSION SWALE

[79] Warning: Submerged Pond 10P Primary device # 1 INLET by 1.16'

 Inflow Area =
 303,836 sf,
 4.25% Impervious,
 Inflow Depth >
 2.17"
 for
 50YR event


 Inflow =
 11.18 cfs @
 12.29 hrs,
 Volume=
 54,846 cf

 Outflow =
 10.95 cfs @
 12.39 hrs,
 Volume=
 54,499 cf,
 Atten= 2%,
 Lag= 6.3 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 1.52 fps, Min. Travel Time= 3.9 min Avg. Velocity = 0.73 fps, Avg. Travel Time= 8.2 min

Peak Storage= 2,596 cf @ 12.33 hrs Average Depth at Peak Storage= 1.46' Bank-Full Depth= 2.00', Capacity at Bank-Full= 21.78 cfs

2.00' x 2.00' deep channel, n= 0.140 Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 360.0' Slope= 0.0259 '/' Inlet Invert= 275.31', Outlet Invert= 266.00'

Summary for Reach 9R: ROAD SIDE DITCH

[79] Warning: Submerged Pond 8P Primary device # 1 INLET by 0.31'

 Inflow Area =
 158,742 sf, 2.58% Impervious, Inflow Depth > 1.74" for 50YR event

 Inflow =
 5.20 cfs @ 12.30 hrs, Volume=
 22,972 cf

 Outflow =
 5.14 cfs @ 12.33 hrs, Volume=
 22,932 cf, Atten= 1%, Lag= 1.9 min

Routing by Stor-Ind+Trans method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Max. Velocity= 3.98 fps, Min. Travel Time= 1.0 min Avg. Velocity = 2.17 fps, Avg. Travel Time= 1.9 min

Peak Storage= 326 cf @ 12.31 hrs Average Depth at Peak Storage= 0.81' Bank-Full Depth= 1.00', Capacity at Bank-Full= 9.17 cfs

0.00' x 1.00' deep channel, n= 0.050 Side Slope Z-value= 2.0 '/' Top Width= 4.00' Length= 250.0' Slope= 0.0696 '/' Inlet Invert= 293.00', Outlet Invert= 275.61'

Summary for Pond 8P: lot 152-4 driveway culvert

[88] Warning: Qout>Qin may require Finer Routing>1

Inflow Area =	158,742 sf, 2.58% Impervious,	Inflow Depth > 1.74" for 50YR event
Inflow =	5.20 cfs @ 12.29 hrs, Volume=	22,983 cf
Outflow =	5.20 cfs @ 12.30 hrs, Volume=	22,972 cf, Atten= 0%, Lag= 0.4 min
Primary =	5.20 cfs @ 12.30 hrs, Volume=	22,972 cf

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 294.96' @ 12.30 hrs Surf.Area= 84 sf Storage= 103 cf

Plug-Flow detention time= 0.5 min calculated for 22,896 cf (100% of inflow) Center-of-Mass det. time= 0.3 min (832.7 - 832.4)

2-LOT POST

Type III 24-hr 50YR Rainfall=6.54" Printed 3/1/2016 Page 14

Prepared by {enter your company name here} HydroCAD® 9.10 s/n 01096 © 2009 HydroCAD Software Solutions LLC

Volume	Inv	ert Avai	I.Storage	Storage Description				
#1	293.	50'	199 cf	Custom Stage D	ata (Irregular) Lis [.]	ted below (Recalc)		
Elevatio (fee 293.5 294.0 296.0	et) 50 00	Surf.Area (sq-ft) 50 70 100	Perim. (feet) 50.0 75.0 80.0	Inc.Store (cubic-feet) 0 30 169	Cum.Store (cubic-feet) 0 30 199	Wet.Area (sq-ft) 50 301 467		
Device	Routing	Inv	vert Outle	et Devices				
#1	Primary	293				500 = 0.0100 '/' Cc= (0.900	

Primary OutFlow Max=5.19 cfs @ 12.30 hrs HW=294.95' (Free Discharge) ←1=Culvert (Barrel Controls 5.19 cfs @ 4.57 fps)

Summary for Pond 10P: lot 152-3 driveway culvert

[62] Hint: Exceeded Reach 9R OUTLET depth by 0.95' @ 12.30 hrs

Inflow Area	ι =	215,597 sf,	4.59% Impervious	Inflow Depth > 2.02"	for 50YR event
Inflow	=	8.20 cfs @	12.32 hrs, Volume=	36,205 cf	
Outflow	=	8.20 cfs @	12.32 hrs, Volume=	36,192 cf, Atte	en= 0%, Lag= 0.3 min
Primary	=	8.20 cfs @	12.32 hrs, Volume=	36,192 cf	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Peak Elev= 277.37' @ 12.32 hrs Surf.Area= 91 sf Storage= 134 cf

Plug-Flow detention time= 0.4 min calculated for 36,192 cf (100% of inflow) Center-of-Mass det. time= 0.3 min (826.5 - 826.2)

Volume	Inv	ert Avail.Sto	rage Storage	e Description	
#1	275.6	61' 19	93 cf Custor	n Stage Data (Pri	smatic) Listed below (Recalc)
Elevatio (fee 275.6 276.0 278.0	et) 61 00	Surf.Area (sq-ft) 50 70 100	Inc.Store (cubic-feet) 0 23 170	Cum.Store (cubic-feet) 0 23 193	
Device #1	Routing Primary	Invert 275.61'		d Culvert L= 30.	0' Ke= 0.500 275.31' S= 0.0100 '/' Cc= 0.900

Primary OutFlow Max=8.13 cfs @ 12.32 hrs HW=277.36' (Free Discharge) -1=Culvert (Barrel Controls 8.13 cfs @ 4.96 fps) Map 401 Lot 152-3 Allenstown NH Job # 14-61 Page 8

SUBCATCHMENT DIAGRAMS